

CENTER FOR TRANSPORTATION RESEARCH

An Adaptive Signal Control Method Involving the Lighthill Whitham **Richards Model Using Mixed Integer Linear Programming** Hao Liu, Amber Chen, Ph.D., and Randy Machemehl, Ph. D.

An adaptive signal control framework for a single intersection is developed. Both the traffic volume prediction model (LP) and the signal optimization model (MILP) are derived from the Barron-Jensen/Frankowska (B-J/F) solution to the LWR model. Moreover, a approximated algorithm is proposed to solve the optimization model fast to make this method applicable.

Introduction

Kernel components of adaptive control algorithms:

- Traffic volume prediction: detectors;
- Signal optimization model: traffic flow models.

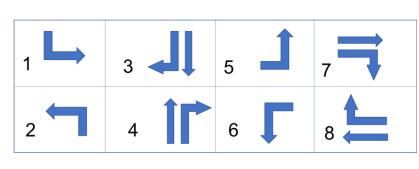
Methods proposed in the past decades:

- SCOOT (1) and SCATS (2): Efficiency decreases with rapidly varying traffic conditions;
- OPAC (3) and RHODES (4): Rolling horizon scheme is utilized to address limitation of the distance between the intersection and upstream detectors;
- Zheng and Recker (5) : Assumes Poisson arrivals and constant rate in each iteration.

Contributions of this paper:

- > Propose a traffic volume prediction model resorted to the current traffic state in a surveillance system;
- Propose a signal optimization model based on the Barron-Jensen/Frankowska (B-J/F) solution to the Lighthill-Whitham-Richards (LWR) model;
- Demonstration through microscopic simulation

Network Layout

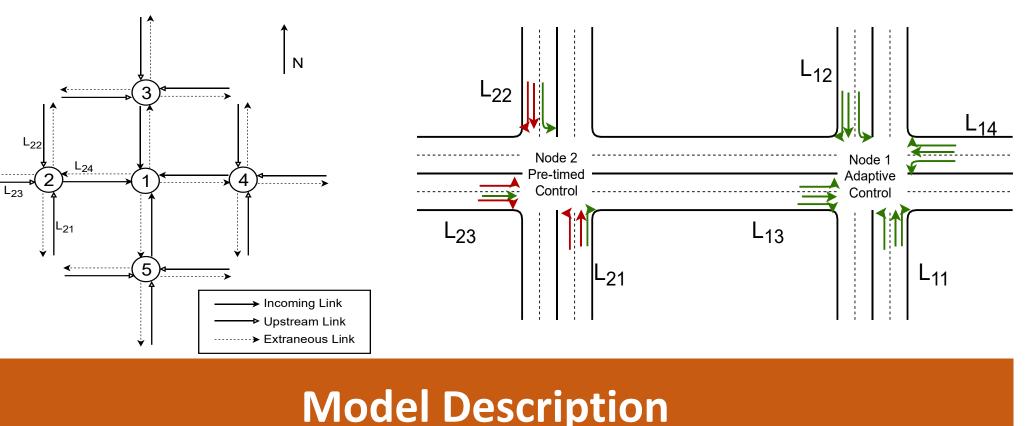


	Phase number	1	2	3	4
	Movements (nodes 3 and 5)	1 & 2	3 & 4	5&6	7 & 8
	Green Time (s)	12	28	12	28
	Movements (nodes 2 and 4)	7 & 8	5&6	3 & 4	1 & 2
	Green Time (s)	28	12	28	12

 $\max_{q_{out}^{j}(t,i)}$ s.t.

Predict the inflow of incoming links:

 $\left(q_{in}(t,5) = \left(q_{out}^{2*}(t,1)\beta^{2}(1) + q_{out}^{2*}(t,4)\beta^{2}(4) + q_{out}^{2*}(t,7)\beta^{2}(7)\right)\alpha_{5}\right)$ $\left| q_{in}(t,7) = \left(q_{out}^{2*}(t,1)\beta^{2}(1) + q_{out}^{2*}(t,4)\beta^{2}(4) + q_{out}^{2*}(t,7)\beta^{2}(7) \right) \alpha_{7} \right|$



Optimization:

Prediction: Predict the outflow from upstream links:

$\sum_{j \in J} \sum_{i \in I} \sum_{t \in N} q_{out}^{j}(t, i)(n_{\max} - t)$	
Compatibility	$\forall i \in I, j \in J$
$q_{out}^{j}(t,i) \leq c(i) p^{j}(t,r)$	$\forall i \in I_r, t \in N, j \in J, r \in K$
$q_{out}^{j}(t,i) \ge 0$	$\forall i \in I, t \in N, j \in J$

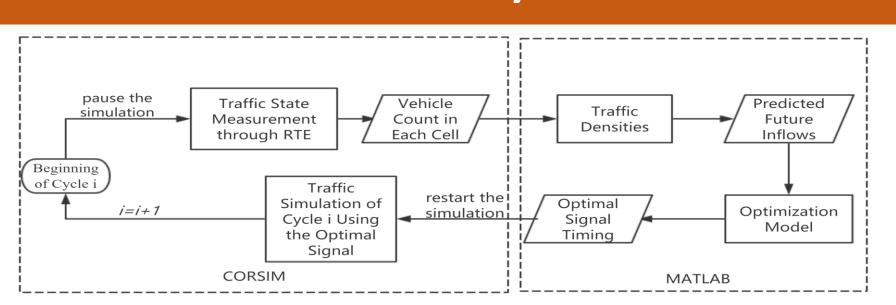
$\sum p(r,t) \le 1,$ $\sum_{t \in [1, n_{\max}]} p(r, t) \ge 1,$ " $r \in [1, r_{\max}]$ *(b)* $p(r, t+1) + \sum_{\substack{r' \in [1, r_{\max}] \\ r' \neq r}} p(r', t) \le 1, \quad "r \in [1, r_{\max}], "t \in [1, n_{\max} - 1] \quad (c)$ $\sum_{i=1}^{t+g_{\min}} p(r,i) \ge g_{\min},$ " $t \in [1, n_{\max} - g_{\min}]$ (d) $p(r,1) \ge 1,$ *(e)*

Signal constraints:

$$\sum_{r \in [1, r_{\max}]} p(r, n_{\max}) \le 0, \tag{f}$$

$$q_{out}(i,t) \le c(i)p(r,t),$$
 " $i \in I_r$, " $r \in [1, r_{max}]$ (g)

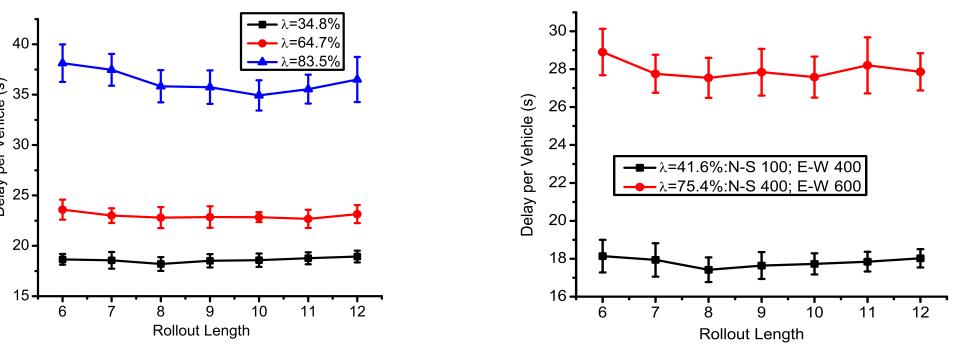
" $t \in [1, n_{\max}]$



Case Study

	Entry flow (vph)								
Balanced	200			400			600		
Dataneed	Exact	Rollout	HCM	Exact	Rollout	HCM	Exact	Rollout	HCM
Mean	17.6	22.8	44.5	22.5	22.8	28.3	33.9	34.9	44.5
Reduced (%)	23.6	19.4	-	20.6	19.4	-	23.8	21.6	-
p-value	2.2e-7	2.0e-7	-	6.0e-7	2.0e-7	-	2.4e-7	8.2e-7	-
λ (%)		40.2			65.8			83.5	
		N-S 100			N-S 200			N-S 400	
Unbalanced	-	E-W 400			E-W 500			E-W 600	
	Exact	Rollout	HCM	Exact	Rollout	HCM	Exact	Rollout	HCM
Mean	17.5	17.7	24.4	20.8	21.4	26.2	27.2	27.6	33.1
Reduced (%)	28.3	27.2	-	20.7	18.1	-	17.8	16.6	-
p-value	6.8e-11	2.7e-10	-	2.1e-8	1.7e-7	-	1.2e-6	2.0e-6	-
λ (%)		41.6			57.2			75.4	

Effect of Rollout Length:



Future Research Direction

- > Consider the uncertainty in the mean of volume if only historical data is available
- \succ Take start-up delay into account;
- Develop a model for arterial street and network level.

collaborate. innovate. educate.