

Background and Motivation

- •One project may help improve the traffic conditions at the local level, but the group effects of a set of projects on the entire road network might be different due to shifts in modes and routes.
- •A consistent framework for evaluating the network-wide economic impacts of planned or proposed freight corridor projects is needed.
- •This system can be used to address complicated questions, such as determining the economic impact and value of complex scenarios or testing new technologies and policies.

Automated Data Process

The study team created an automated data processing procedure that can take travel characteristics from SAM outputs and generate the input data required by TREDIS to perform an economic analysis. This procedure provides a range of outputs that can also be used for other types of analysis.

Evaluate Economic Impacts of Freight Corridor Projects Presenters: Rydell D. Walthall, Ruohan Li, Dr. Nan Jiang, Dr. Michael Walton

Detailed Safety Benefits Analysis

- •Different types of roadways have different crash rates •Links in SAM have functional classifications according to FHWA categories
- •The study team used TxDOT's CRIS database to estimate network

Example Scenarios

Addressing Texas's Most Congested Locations

Based on TTI's ranking of the most congested roadways the state, the study team built scenario around all of proposed the projects associated with the top twenty congested locations

Texas's average crash rate (on a per-vehicle mile basis) and apply those rates to each roadway category in the

The study

all values in \$millions	Full Exclusion
Present Value of Benefit Stream	15 195
Travel Benefits	18 883
Value of Vehicle Operating Cost (VOC)	4 861
Value of In-Vehicle Travel Time (IVTT)	-10 378
Value of Improved Travel Time Reliability	17 333
Value of Safety Improvement	7 066
Environmental and Social Benefits	1 559
Value of Emission Reduction For Mobile Source Pollutants	347
Value of Emission Reduction For Carbon Dioxide	1 243
Wider Economic (Productivity) Benefits	-5 248

The methodology was applied to segments of four rural corridors:

- US 281
- US 59

corridor was simulated Each with expansion the to minimum standard of a fourlane divided highway

	values in \$millions;
<u>Benefits</u>	
	Value of E
	١
<u>Costs</u>	
<u>B/C</u>	
	Transpor
	Traditional E

Testing Truck-only Lanes

team used the analysis procedure to test truckonly lanes along the major highways of the Texas Triangle.

Expanding Texas's Rural Corride Transitions Transitions Study Area - Unchanger

- US 87
- US 69

calculated at a 3% discount rate	US 87	US 59	US 281	US 69		
Value of Vehicle Operating Cost (VOC)	-264.1	-2 052.9	76.8	-417.5		
Value of In-Vehicle Travel Time (IVTT)	1 976.4	-1 339.8	994.3	2 491.8		
Value of Improved Travel Time Reliability	557.2	1198	87.4	77.0		
Value of Safety Improvement	-144.2	-2822.3	90.4	-355.5		
Total Travel Benefits	2 125.4	-5017	1 248.9	-104.1		
mission Reduction For Mobile Source Pollutants	-3	-84.1	24.3	-22.0		
Alue of Emission Reduction For Carbon Dioxide	-42.8	-334	7.9	-82.1		
Total Environmental Benefits	-45.8	-418.1	32.2	-104.1		
Wider Economic (Productivity) Benefits	344.2	299.7	183.9	320.8		
Present Value of Benefits Stream	2 424	-5 135	1 465	2 012.5		
Capital Investment Costs	1 203.43	1 455.3	1 702.1	450.1		
Operation and Maintenance Costs	381.66	461.5	539.8	102.5		
Residual Value of Capital Spending	-105.66	-402.9	-471.2	-58.2		
Present Value of Cost Stream	1 479.43	1 513.9	1 770.7	494.4		
Benefit-Cost Ratio (Benefits / Costs)						
tation System Efficiency - Traveler Benefits Only	1.31	-3.31	0.71	3.63		
BCA - Traveler Benefits + Environmental Benefits	1.28	-3.59	0.72	3.42		
Full Societal BCA - All Benefit Categories	1.49	-3.53	0.86	4.07		

The Freight Modelling Lab Research Group would like to acknowledge the dedicated feedback from TxDOT's Freight Division, which has greatly improved the quality and shaped the direction of this project

collaborate. innovate. educate.