

Understanding the impacts of freeway lane closures through data: a combined analysis of NPMRDS and fixed-sensor data

TEXAS

AT AUSTIN

Amber Chen, Yun Li, Heidi Westerfield Ross, Tengkuo Zhu, Natalia Ruiz Juri, Ph. D.

ASSESSING THE IMPACT OF CLOSURES

- User delay costs are often use by agencies to evaluate the impact of lane closures
- Current approaches to evaluate user delay cost involve ESTIMATION using simple deterministic queue models or simulations.
- Probe-based speed data can support a direct evaluation of user delay costs.
- Benefits: direct measurement of queue length and position over time.
- Limitations
- Location of start/end of queue is not precise, particularly for long segments
- Volume information must be obtained from separate sources

Mustration of proposed method

APPROACH

- Estimate queue lengths and position over time based on NPMRDS speed data
 - "Queued" links are identified using a speed threshold.
 - Simple method to better approximate queue start and end point for selected speed thresholds.
- Estimate volumes based on speed-flow curves calibrated using NPMRDS data and a limited number of traffic sensors.
- Estimate user delay cost by combining traffic volumes and delays.
- Implement using R-shiny package to facilitate use.

Acknowledgment, this work was funded by the Texas Department of Transportation Austin District through Inter Agency Contract No. 14-8XXIA002

VOLUME ESTIMATION

Data Collection

ķ 1					
4	A				
ì	NPMRDS segment				
	Sensor				

Time	Speed from seg. 1	Counts from sensor A	
2019/1/9 6:00	35	100	
2019/1/9 6:05	40	90	

Relationship between volume and segment speed

Validation

internal (minutes)	Mean (vehicles)	Standard Deviation (schicles)	RMSEt Speed flow diagram (vehicles)	RMNE: NPMIRIDS (vehicles)
3	68.62	17 (-1	15 22	39.3660
10	122.51	42.97	26 10	159.35
15	169.70	71.92	35.95	222.709
30	290.02	162.15	61 *0	393.594
60	460 %	333.51	103.77	(4)3 403
120	779 07	649.75	171.99	1 174 33

Companison of this estimates using proposed speed-flow degreen and generic. NPMPDS method (NPMPDS: User Delay Cost Analysis: https://emeds.nls.org/ entilytics/heip/fluids-19 analysis/hore-user-delay-cost is-calculated.)

QUEUE ESTIMATION

Queue position refinement

- Case Study
- Data
- Segment-level (TMC) speeds every 5 minutes used for queue position estimation
- Smart work-zone trailer speed data used to validate queue position

FINDINGS

- Estimation of queue lengths and position over time based on NPMRDS speed date.

 Speed throughout a figure and likely to provide many attacks are suited.
- Speed thresholds of 30 mph or lower are likely to provide more stable results.
- Estimation of corridor-level speed-flow relationship based on data from a limited number of sensors.
- The model performs well within most traffic conditions (6 am-10 pm), improving upon the more generic method typically used for NPMRDS data.
- The model tends to over-estimate traffic counts in low-volume/high-speed situations.